(100 MHz) δ 137.3, 136.8, 79.3, 72.4, 50.6, 46.5, 42.1, 40.3; ¹H NMR (400 MHz) δ 6.32 (dd, J = 5.6, 3.1, 1 H), 6.15 (dd, J = 5.6, 3.1, 1 H), 3.85 (d, J = 12.5, 1 H), 3.73 (d, J = 12.5, 1 H), 3.24 (br s, 1 H), 2.92 (br s, 1 H), 2.21 (br s, 1 H, hydroxyl), 1.92 (dd, J = 13.6, 3.5, 1 H), 1.72 (dd, J = 13.6, 3.4, 1 H), 1.55 (m, 1 H), 1.48 (d, J = 9.3, 1 H); EIMS m/z 202 (M⁺); HREIMS (M⁺) calcd for $C_8H_{11}BrO$ 201.9994, found 202.0000.

(1 \bar{S} ,2S,4R)-2-Bromobicyclo[2.2.1]heptane-2-methanol (5). To olefin 4 (3.43 g, 15.6 mmol) in EtOAc (100 mL) was added 10% Pd/C (200 mg), and a hydrogen atmosphere was secured. After being stirred for 4 h, the reaction mixture was filtered through a bed of silica gel and concentrated to yield alcohol 5 as a white solid (3.41 g, 99%): mp 39–41 °C; $[\alpha]^{23}_D$ = +47° (c = 1.78, CHCl₃); IR (KBr) 3336, 2963, 1064 cm⁻¹; ¹³C NMR (100 MHz) δ 82.5, 71.4, 45.8, 45.2, 36.7, 36.5, 28.7, 28.1; ¹H NMR (300 MHz) δ 3.56 (ab, J = 12.5, $\Delta \nu$ = 8.6, 2 H), 2.58 (br s, 1 H), 2.33 (br s, 1 H), 2.17–2.03 (m, 2 H), 1.92–1.77 (m, 2 H), 1.66–1.62 (m, 2 H), 1.50–1.16 (m, 3 H); CIMS m/z 222 (M⁺ + NH₄): HRCIMS (M⁺ + NH₄) calcd for $C_8H_{17}B$ rNO 222.0494, found 222.0475.

 $(1\mathring{S},2\mathring{S},4R)$ -Spiro[bicyclo[2.2.1]heptane-2,2'-oxirane] (6). The bromo alcohol 5 (2.98 g, 13.4 mmol) was dissolved in methanol (25 mL) and treated with CH₃ONa (3.62 g, 67.0 mmol). The suspension was stirred for 4 h and then quenched by the addition of saturated aqueous NH₄Cl (75 mL) and extracted with ether (3 × 50 mL). The combined organic extracts were washed with brine (4 × 25 mL), dried over MgSO₄, and concentrated to afford quantitatively the crude epoxide which purified by chromatography (6:1 pentane-ether) to yield the volatile epoxide 6 as colorless oil (1.65 g, 99%): $[\alpha]^{23}_{\rm D} = +58^{\circ}$ (c = 0.97, CHCl₃); IR

(neat, NaCl) 2955, 2871, 1060 cm⁻¹; ¹³C NMR (100 MHz) δ 66.6, 50.4, 43.0, 38.4, 37.5, 36.5, 27.8, 24.8; ¹H NMR (400 MHz) δ 2.77 (d, J = 4.7, 1 H), 2.73 (d, J = 4.7, 1 H), 2.37 (br s, 1 H), 1.74 (d, J = 2.1, 1 H), 1.74–1.47 (m, 5 H), 1.34–1.11 (m, 3 H); EIMS m/z 124 (M⁺); HREIMS (M⁺) calcd for $C_8H_{12}O$ 124.0888, found 124.0834.

(1S,4R)-Bicyclo[2.2.1]hept-2-ene-2-methanol (7). To ether at 0 °C was added diethylamine (2.92 mL, 28.2 mmol) followed by n-BuLi (2.5 M in hexanes, 11.3 mL, 28.2 mmol). The reaction mixture was maintained at 0 °C for 15 min and then warmed to ambient temperature. After 30 min the epoxide 6 (1.40 g, 11.3 mmol) in ether (25 mL) was added and the reaction mixture was heated to reflux. After an additional 2 h the reaction mixture was cooled, poured into H2O (50 mL), and extracted with ether $(3 \times 50 \text{ mL})$. The combined organic extracts were dried over MgSO₄, concentrated, and purified by chromatography (2:1 pentane-ether) to yield the volatile allylic alcohol 7 (1.30 g, 93%): $[\alpha]^{23}_{D} = +38^{\circ} (c = 0.35, CHCl_3); IR (neat, NaCl) 3328, 2960, 2868,$ 1018 cm⁻¹; ¹³C NMR (126 MHz) δ 149.1, 129.1, 60.9, 48.3, 42.6, 42.1, 26.2, 24.7; ¹H NMR (400 MHz) δ 5.80 (s, 1 H), 4.20 (ab, J = 14.1, $\Delta \nu$ = 25.2, 2 H), 2.84 (m, 2 H), 1.70-1.61 (m, 2 H), 1.42-1.38 (m, 2 H), 1.13 (d, J = 8.1, 1 H), 1.06-0.97 (m, 2 H); EIMS m/z124 (M⁺); HREIMS (M⁺) calcd for C₈H₁₂O 124.0888, found

Acknowledgment. This research was assisted financially by the National Institutes of Health, the National Science Foundation, and Merck, Sharp and Dohme (Postdoctoral Fellowship to C.L.C.).

Additions and Corrections

Vol. 56, 1991

Joseph Frey, David A. Nugiel, and Zvi Rappoport*. Two Dimers Derived from the 2,4,6-Tri-tert-butylphenyl Radical, Formed during Reactions of the Aryllithium or the Grignard Reagent with Carbonyl Compounds.

Page 469, column 1, last line should read X-ray crystal structure analysis of 1-2: space group $P\bar{1}$.

Vol. 57, 1992

Ming-tain Lai, Eugene Oh, Younan Shih, and Hung-wen Liu*. Synthesis of Enantiomerically Pure [(Methylenecyclopropyl)acetyl]-CoA: The Causative Agent of Jamaican Vomiting Sickness.

Page 2471. Since publication of our synthesis, another example has come to our attention: Kabat, M. M.; Wicha, J. *Tetrahedron Lett.* 1991, 32, 531-532.

Zhen Yang, Henry N. C. Wong,* Po Ming Hon, Hson Mou Chang, and Chi Ming Lee. A Novel Synthesis of the Dibenz-[b,f]oxepin Ring System: 10,11-Dihydro-11-hydroxydibenz[b,f]oxepin-10(11H)-one.

Page 4034, column 2. Supplementary Material Available should read ¹H- and ¹³C-NMR spectra of 3, 6, 7, and 8 (8 pages). This material is contained in many libraries on microfiche, immediately

follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

Ernesto G. Occhiato, Antonio Guarna,* Alberto Brandi, Andrea Goti, and Francesco De Sarlo. N-Bridgehead Polycyclic Compounds by Sequential Rearrangement-Annulation of Isoxazoline-5-spirocyclopropanes. 6. A General Synthetic Method for 5,6-Dihydro-7(8H)- and 2,3,5,6-Tetrahydro-7(1H)-indolizinones.

Page 4206, Scheme I. In formulas 5a-e and 5f-h, R_3 and R_4 must be inverted.

Rui Tamura,* Ken-ichiro Watabe, Noboru Ono, and Yukio Yamamoto. Asymmetric Synthesis of 3-Substituted 2-exo-Methylenealkanones by Addition-Elimination Reaction Using a Chiral Leaving Group and Organometallic Nucleophiles.

Page 4898, Scheme I. The β -methyl in compound 16 should be drawn in the α position.

Jung Lee and James K. Coward*. Enzyme-Catalyzed Glycosylation of Peptides Using a Synthetic Lipid Disaccharide Substrate.

Supplementary Material. The chemical shift values given in Figure 1a,b are in error due to setting the solvent reference peak at δ 3.1 ppm rather than δ 3.3 ppm. Therefore, in each of the three spectra, the entire spectrum should be displaced 0.2 ppm downfield; e.g., in Figure 1a and b, the pair of quartets centered at δ 2.7 ppm should be at δ 2.9 ppm.